Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 19, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Graph Neural Networks (GNNs) are a popular machine learning framework for solving various graph processing applications. This framework exploits both the graph topology and the feature vectors of the nodes. One of the important applications of GNN is in the semi-supervised node classification task. The accuracy of the node classification using GNN depends on (i) the number and (ii) the choice of the training nodes. In this article, we demonstrate that increasing the training nodes by selecting nodes from the same class that are spread out across non-contiguous subgraphs, can significantly improve the accuracy. We accomplish this by presenting a novel input intervention technique that can be used in conjunction with different GNN classification methods to increase the non-contiguous training nodes and, thereby, improve the accuracy. We also present an output intervention technique to identify misclassified nodes and relabel them with their potentially correct labels. We demonstrate on real-world networks that our proposed methods, both individually and collectively, significantly improve the accuracy in comparison to the baseline GNN algorithms. Both our methods are agnostic. Apart from the initial set of training nodes generated by the baseline GNN methods, our techniques do not need any other extra knowledge about the classes of the nodes. Thus, our methods are modular and can be used as pre-and post-processing steps with many of the currently available GNN methods to improve their accuracy.more » « less
-
Networks (or graphs) are used to model the dyadic relations between entities in complex systems. Analyzing the properties of the networks reveal important characteristics of the underlying system. However, in many disciplines, including social sciences, bioinformatics, and technological systems, multiple relations exist between entities. In such cases, a simple graph is not sufficient to model these multiple relations, and a multilayer network is a more appropriate model. In this paper, we explore community detection in multilayer networks. Specifically, we propose a novel network decoupling strategy for efficiently combining the communities in the different layers using the Boolean primitives AND, OR, and NOT. Our proposed method, network decoupling, is based on analyzing the communities in each network layer individually and then aggregating the analysis results. We (i) describe our network decoupling algorithms for finding communities, (ii) present how network decoupling can be used to express different types of communities in multilayer networks, and (iii) demonstrate the effectiveness of using network decoupling for detecting communities in real-world and synthetic data sets. Compared to other algorithms for detecting communities in multilayer networks, our proposed network decoupling method requires significantly lower computation time while producing results of high accuracy. Based on these results, we anticipate that our proposed network decoupling technique will enable a more detailed analysis of multilayer networks in an efficient manner.more » « less
-
Writing large amounts of data concurrently to stable storage is a typical I/O pattern of many HPC workflows. This pattern introduces high I/O overheads and results in increased storage space utilization especially for workflows that need to capture the evolution of data structures with high frequency as checkpoints. In this context, many applications, such as graph pattern matching, perform sparse updates to large data structures between checkpoints. For these applications, incremental checkpointing techniques that save only the differences from one checkpoint to another can dramatically reduce the checkpoint sizes, I/O bottlenecks, and storage space utilization. However, such techniques are not without challenges: it is non-trivial to transparently determine what data has changed since a previous checkpoint and assemble the differences in a compact fashion that does not result in excessive metadata. State-of-art data reduction techniques (e.g., compression and de-duplication) have significant limitations when applied to modern HPC applications that leverage GPUs: slow at detecting the differences, generate a large amount of metadata to keep track of the differences, and ignore crucial spatiotemporal checkpoint data redundancy. This paper addresses these challenges by proposing a Merkle tree-based incremental checkpointing method to exploit GPUs’ high memory bandwidth and massive parallelism. Experimental results at scale show a significant reduction of the I/O overhead and space utilization of checkpointing compared with state-of-the-art incremental checkpointing and compression techniques.more » « less
-
Sage (Ed.)The convergence of extremely high levels of hardware concurrency and the effective overlap of computation and communication in asynchronous executions has resulted in increasing nondeterminism in High-Performance Computing (HPC) applications. Nondeterminism can manifest at multiple levels: from low-level communication primitives to libraries to application-level functions. No matter its source, nondeterminism can drastically increase the cost of result reproducibility, debugging workflows, testing parallel programs, or ensuring fault-tolerance. Nondeterministic executions of HPC applications can be modeled as event graphs, and the applications’ nondeterministic behavior can be understood and, in some cases, mitigated using graph comparison algorithms. However, a connection between graph comparison algorithms and approaches to understanding nondeterminism in HPC still needs to be established. This survey article moves the first steps toward establishing a connection between graph comparison algorithms and nondeterminism in HPC with its three contributions: it provides a survey of different graph comparison algorithms and a timeline for each category’s significant works; it discusses how existing graph comparison methods do not fully support properties needed to understand nondeterministic patterns in HPC applications; and it presents the open challenges that should be addressed to leverage the power of graph comparisons for the study of nondeterminism in HPC applications.more » « less
-
We present the first GPU-based parallel algorithm to efficiently update vertex coloring on large dynamic networks. For single GPU, we introduce the concept of loosely maintained vertex color update that reduces computation and memory requirements. For multiple GPUs, in distributed environments, we propose priority-based ordering of vertices to reduce the communication time. We prove the correctness of our algorithms and experimentally demonstrate that for graphs of over 16 million vertices and over 134 million edges on a single GPU, our dynamic algorithm is as much as 20x faster than state-of-the-art algorithm on static graphs. For larger graphs with over 130 million vertices and over 260 million edges, our distributed implementation with 8 GPUs produces updated color assignments within 160 milliseconds. In all cases, the proposed parallel algorithms produce comparable or fewer colors than state-of-the-art algorithms.more » « less
An official website of the United States government
